

XOLOTL: A Fast and Flexible Neuronal Simulator

[image: Documentation Status]
 [http://sphinx-rtd-theme.readthedocs.io/en/latest/?badge=latest][image: _images/xolotl.svg][image: _images/a45d8592a69a3c2a6f2a6ca9059d7b1a6eeb24df.png]
xolotl is a fast single-compartment and multi-compartment simulator written in
C++ with a MATLAB interface. Designed with a focus on ease-of-use, flexibility and speed,
xolotl simulates conductance-based neuron models and networks.

Contents:

	Quickstart

	Frequency Asked Questions (FAQ)

	Installing, Updating and Uninstalling

	How do I…

	Methods

	Compiler Support

	Units

	Contributing to xolotl

	Troubleshooting

	License

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

This quickstart guide will get you started using xolotl right away. It will cover installation and basic usage.

Installing

The easiest way to get xolotl is as a MATLAB toolbox. Click here [https://github.com/sg-s/xolotl/releases/download/latest/xolotl.mltbx] to download it, and click on the downloaded file to install.

Creating a Hodgkin-Huxley Model

We will now create a xolotl object that describes a single-compartment neuron model with a fast sodium conductance, delayed rectifier potassium conductance, and passive leakage.
The compartment has a membrane capacitance 'Cm' of 10 nF/mm^2 and a surface area of 0.01 mm^2.
These conductances come from Liu et al. 1998. 'gbar' is the maximal conductance in uS/mm^2 and 'E' is the reversal potential in mV.

% create the xolotl object
x = xolotl;

% add a compartment
x.add('compartment', 'HH', 'Cm', 10, 'A', 0.01);

% add conductances
x.HH.add('liu/NaV', 'gbar', 1000, 'E', 50);
x.HH.add('liu/Kd', 'gbar', 300, 'E', -80);
x.HH.add('Leak', 'gbar', 1, 'E', -40);

Simulate the Model

We simulate the model using the GUI to manipulate the leak conductance.

x.t_end = 1000; % ms
x.manipulate('*Leak*')

You should get a GUI that pops up showing the voltage trace, with sliders that allow you to vary parameters for the Leak conductance. Play with the sliders and see what happens!

Frequency Asked Questions (FAQ)

Who Wrote xolotl?

xolotl was designed and written by Srinivas Gorur-Shandilya [https://srinivas.gs/] and Alec Hoyland in
Eve Marder’s laboratory [https://blogs.brandeis.edu/marderlab/] at Brandeis University.

How Can I Contribute?

xolotl is far from complete and contributions are welcome. Check out our guide
on how to report bugs, add conductances and mechanisms, or contribute to the code base.

Something is Broken, What Do I Do?

As the Hitchiker’s Guide to the Galaxy reads, “DON’T PANIC”. The most common error
we see is an issue between MATLAB, the MEX compiler, and your computer. In that
situation, a first step would be to check our compilers guide which has detailed fixes for
some of the most common compiler issues we’ve seen.

Hint

If GetMD5 fails, then it’s definitely at least a compiler issue.

If it’s not a compiler issue and you’ve checked all the typical programming
pitfalls (syntax, spelling, your MATLAB path, cleared your workspace, etc…),
try the following

% erases all the compiled binaries of xolotl networks
x.cleanup

If you’re still having a problem, we might have fixed it already! Reinstall or update by running the xolotl.update() if you installed the toolbox or pulling from the repository if you’re using git.
Remember that if you’re using git you should be sure to pull all the dependencies as well
(srinivas.gs_mtools, cpplab, puppeteer).

How Do I Cite This?

Thanks for thinking of us! We’ll be publishing later this year, and a preprint is available on bioRxiv.

Installing, Updating and Uninstalling

There are multiple ways to install this toolbox, based on your level of expertise and the toolchain on your computer.

Installing: Download a MATLAB Toolbox

xolotl is available as a MATLAB toolbox. Click here [https://github.com/sg-s/xolotl/releases/download/latest/xolotl.mltbx] to download it, and click on the downloaded file to install.

Warning

If you wish to develop xolotl further, you should probably use git (see below).

Installing: Via Git

If you are comfortable with git, you can clone all the code and dependencies yourself:

git clone https://github.com/sg-s/srinivas.gs_mtools
git clone https://github.com/sg-s/puppeteer
git clone https://github.com/sg-s/xolotl
git clone https://github.com/sg-s/cpplab

You will have to manually set your MATLAB paths. Make sure you add the main folder for puppeteer, cpplab, and xolotl, and all subfolders of srinivas.gs_mtools/src.

Warning

If you want to develop xolotl further, make sure you’re running a non-Windows OS, and that you make the pre-commit git hook executable: chmod a+x ./git/hooks/pre-commit

Updating

In most cases, xolotl can update itself to the latest version using

xolotl.update()

If you installed using git, xolotl will attempt to do a git pull and update itself. If you installed it as a MATLAB toolbox, xolotl will delete the old toolbox, download the new one, and install that.

Uninstalling

If you installed xolotl as a MATLAB toolbox, you can easily uninstall it using

xolotl.uninstall()

Note that this doesn’t do anything if you installed using git, or if you manually downloaded the files and linked them.

How do I…

create a empty xolotl object?

x = xolotl;

This is a prerequisite to doing anything else. (You can name your object whatever you want, but this documentation will assume that you’ve named it x).

create a new compartment?

You can first create a new compartment using cpplab

AB = cpplab('compartment','vol',.01);

At this point you have created a free-floating object. You can inspect it just like you would any other MATLAB object:

AB

AB =

 compartment object with:

 hash : 44c3772
 Cm : 10
 A : 0.01
 radius : NaN
 vol : NaN
 Ca_average : NaN
 shell_thickness : NaN
 tree_idx : NaN
 V : -60
 neuron_idx : NaN
 Ca_target : NaN
 Ca : NaN
 Ca_out : 3000
 len : NaN

and then add it to the xolotl object tree:

x.add('AB', AB);

A handy shortcut for this is:

x.add('compartment', 'AB', 'vol', .01)

This shortcut syntax will be used for the rest of the documentation, but remember that you can also do things the “long” way.

add a mechanism to a compartment?

Assuming you have a compartment called AB in your xolotl object, you can add
the mechanism CalciumMech1 through the add function and specify the value
of the parameter f,

x.AB.add('CalciumMech1', 'f', 1.498)

add a conductance to a compartment?

Assuming you have a compartment called AB in your xolotl object,

x.AB.add('liu/NaV');

The string liu/NaV specifies the path within the C++ folder that indicates where the header file for the thing that we want to add is.

Once again, you can inspect this object just like you would any other MATLAB object:

x.AB.NaV

ans =

 NaV object with:

 hash : 49007f5
 E : NaN
 m : NaN
 gbar : NaN
 h : NaN

As always, you can set these properties after-the-fact (e.g. x.gbar = 100), or when the conductance is added
(e.g. x.add('liu/NaV', 'gbar', 100)).

find out what conductances are available?

Look in the folder yourself! All C++ headerfiles are contained in the C++ folder in the xolotl directory. If you are unsure where that is, type this in your MATLAB prompt:

fileparts(fileparts(which('xolotl')))

add a custom conductance?

The quickest way is to use the conductance class. The conductance class expects steady-state gating functions
for activation and inactivation variables (m_inf and h_inf) and their respective time-constants (tau_m, tau_h).
Whether the channel fluxes calcium (is_Ca) and whether it should use approximations for the gating functions
rather than integrating (is_approx) can be set. In addition, you can set the default activation and inactivation variable
initial conditions (default_m and default_h), and the default reversal potential (default_E). Finally, you should
be sure to set the exponential fit parameters (p and q) so that the instantaneous conductance is gbar * m^p * h^q.

newCond = conductance;
newCond.m_inf = @m_inf;
newCond.h_inf = @h_inf;
...
newCond.generateCPPFile('name_of_conductance');

Alternatively, you can make your own custom conductances by editing a copy of the conductance templates found in
../xolotl/conductances/templates/. If you think it should be added to xolotl as a permanent feature, send us a message.

inspect the object I have created?

You can inspect any object by outputting it in the command window. For example, to inspect the whole xolotl object

>> xolotl object with

+ HH
 > NaV (g=NaN, E=NaN)

You can click on the linked (blue) text to inspect those properties, or reference them directly (e.g. x.AB.NaV).

connect two compartments using a synapse?

Connect two compartments with an electrical synapse

x.connect('AB', 'PD')

Connect two compartments with an electrical synapse and specify properties

x.connect('AB' 'PD', 'gbar', 100)

Connect two compartments with a glutamatergic synapse

x.connect('AB', 'LP', 'prinz/Glut')

Connect two compartments with a glutmatergic synapse and specify properties

x.connect('AB', 'LP', 'prinz/Glut', 'gbar', 100)

find out what synapse types are available?

Look in the folder yourself! All C++ headerfiles are contained in the c++/synapses folder in the xolotl directory. If you are unsure where that is, type this in your MATLAB prompt:

fileparts(fileparts(which('xolotl')))

inject current into a compartment?

Add a scalar, vector, or matrix to x.I_ext. This is interpreted as an injected current in nanoamperes.

Inject a constant current into all compartments

x.I_ext = 0.2;

Inject a constant current into one of two compartments

x.I_ext = [0.2 0];

Inject a variable current into one of two compartments

nSteps = x.t_end / x.dt;
I_ext = zeros(nSteps, 2);
I_ext(:,1) = 0.2 * rand(nSteps, 1);
x.I_ext = I_ext;

voltage clamp a compartment?

Add a matrix to x.V_clamp. This is interpreted as an nSteps x nComps matrix of clamped voltage, where
nSteps is the number of time-steps in the simulation, and nComps is the number of compartments.

Clamp the voltage and step it from -50 mV to 50 mV and back

nSteps = x.t_end / x.dt;
V_clamp = -50 * ones(nSteps, 1);
V_clamp(ceil(nSteps/2), 1) = 50;
V_clamp(ceil(nSteps*3/4), 1) = -50;
x.V_clamp = V_clamp;

specify simulation time step and other integration parameters?

Specify the time step by setting x.dt in milliseconds. Specify the simulation time by setting
x.t_end in milliseconds. Injected current and voltage clamp are determined by setting x.I_ext and x.V_clamp.

Set the simulation time to 5000 ms

x.t_end = 5000

Set the time step to 0.1 ms

x.dt = 0.1

integrate the model and obtain outputs?

Integrate the model

[V, Ca, cont_states, currents, syn_currents] = x.integrate

V is the voltage trace as a matrix nSteps x nComps. Ca is the intracellular calcium concentration trace.
cont_states is the controller states and controlled parameters as time series. currents and syn_currents
are the time traces of all the currents and synaptic currents, in the order that they are displayed in the serialized xolotl
object (e.g. how x displays them in the command window).

debug a model or simulation?

xolotl has a debug mode that can be turned on using

x.verbosity = 1;

Methods

This page lists the methods of the xolotl class in MATLAB. This can serve as a reference for advanced usage.

In the rest of this documentation we will assume a xolotl object named x that can be created using

x = xolotl;

Hint

You can list all the methods of xolotl object x by

x.methods;

show

shows activation functions and timescales of any conductance. Usage

x.show('cond_name')

‘cond_name’ must be a string that resolves to a valid C++ file that describes a conductance.

Example

 % compare some channels from the Prinz et al. paper
xolotl.show('prinz/NaV')
xolotl.show('prinz/Kd')
xolotl.show('prinz/KCa')

See Also

	plot [https://xolotl.readthedocs.io/en/latest/auto_methods.html#plot]

	getGatingFunctions [https://xolotl.readthedocs.io/en/latest/auto_methods.html#getgatingfunctions]

Test coverage

show is tested in:

compile

compiles a executable binary form a transpiled C++ file. These are stored in your xolotl directory. xolotl automatically compiles when t needs to. You can turn this functionality off by setting

x.skip_hash = true;

In addition, creating a xolotl object through a function call does not utomatically hash and compile. In this case, you should use x.md5hash.

If you turn hashing off, xolotl might not compile

See Also:

	transpile [https://xolotl.readthedocs.io/en/latest/auto_methods.html#transpile]

	cleanup [https://xolotl.readthedocs.io/en/latest/auto_methods.html#cleanup]

Test coverage

compile is tested in:

contributingCurrents

This static method calculates the contributions of each current at every point in a voltage race. This is used internally in xolotl.plot to color voltage traces. The syntax is

curr_index = xolotl.contributingCurrents(V, I)

where V is a vector of voltages, I is the corresponding matrix of currents

See Also

	plot [https://xolotl.readthedocs.io/en/latest/auto_methods.html#plot]

	manipulate [https://xolotl.readthedocs.io/en/latest/auto_methods.html#manipulate]

Test coverage

contributingCurrents is tested in:

matrixCost

a static method to compute the distance between two LeMasson matrices. This is a useful way to determine how similar two voltage traces are.

Usage

C = matrixCost(M1,M2)

where M1 and M2 are two matrices returned by xolotl.V2matrix() and represent discretized probability distributions of a derivative-embedded attractor of the voltage trace.

See Also

LeMasson G, Maex R (2001) Introduction to equation solving and parameter fitting. In: De Schutter E (ed) Computational Neuroscience: Realistic Modeling for Experimentalists. CRC Press, London pp 1–21

	V2matrix [https://xolotl.readthedocs.io/en/latest/auto_methods.html#v2matrix]

Test coverage

matrixCost is tested in:

checkCompartmentName

is used internally by xolotl to verify that the compartment name you are using is valid and legal. This method is called every time you add a compartment to a xolotl object. Usage

ok = checkCompartmentName(self,comp_name)

See Also

	add [https://xolotl.readthedocs.io/en/latest/auto_methods.html#add]

Test coverage

checkCompartmentName is tested in:

benchmark

performs a quick benchmarking of a given xolotl model. benchmark first varies the simulation time step, and measures how quickly the model integrates. It then varies t_end, and measures how fast it integrates at a fixed sim_dt. Usage

x.benchmark;

Test coverage

benchmark is tested in:

V2matrix

a static method that converts a voltage trace into a LeMasson matrix. Usage

[M, V_lim, dV_lim] = V2matrix(V, V_lim, dV_lim)

where V is a vector (a voltage time series), and V_lim and dV_lim are two-element vectors that specify the lower and upper bounds of V and dV

This static method allows you to create a delay-embedding of a voltage trace, and then discretize the space and count the number of points in each bin. The resultant matrix is sometimes called a LeMasson matrix. M is the LeMasson matrix, which is always of size 101x101.

If you do not specify V_lim and dV_lim, they will be computed automatically and returned.

See Also

LeMasson G, Maex R (2001) Introduction to equation solving and parameter fitting. In: De Schutter E (ed) Computational Neuroscience: Realistic Modeling for Experimentalists. CRC Press, London pp 1–21

	matrixCost [https://xolotl.readthedocs.io/en/latest/auto_methods.html#matrixcost]

Test coverage

V2matrix is tested in:

uninstall

A static method that uninstalls your installation of xolotl in place. If you installed using git, xolotl will attempt to use git to uninstall itself. Usage

xolotl.uninstall
x.uninstall

Test coverage

uninstall is tested in:

plotgbars

makes a stem plot of conductance densities in a given compartment. Usage

x.plotgbars('compartment_name');
x.plotgbars(axes_handle,'compartment_name');

Test coverage

plotgbars is tested in:

update

A static method that updates your installation of xolotl in place. If you installed using git, xolotl will attempt to use git to update itself. Usage

xolotl.update
x.update

Test coverage

update is tested in:

copy

copies a xolotl object. copy creates an identical copy of a xolotl object that can be manipulated seperately. Both copies will use the same binary to integrate, unless you add a new component to one of them. Syntax

x2 = copy(x);

Some read-only properties in a xolotl object may not be copied over.

Warning

Do not make vectors of xolotl objects, as it may lead to undefined behavior.

Test coverage

copy is tested in:

reset

Resets a xolotl object to some default state. Usage

x.reset()
x.reset('snap_name')

reset called without any arguments resets the model as best as it can – voltages are set to -60 mV, Calcium in every compartment is set to the internal value, and the gating variables of every conductance are reset.

reset can also be called with a string argument, which is the name of a snapshot previously stored in the model object. Then, reset reconfigures the parameters of the model to match that snapshot. This is useful for working with a model, changing parameters, evolving it, and then coming back to where you started off from.

Example

% assuming a xolotl object is set up
x.integrate;
x.snapshot('base');
x.set('*gbar') = 1e-3; % turn off all conductances
x.integrate;
% now go back to original state
x.reset('base')

See Also

	snapshot [https://xolotl.readthedocs.io/en/latest/auto_methods.html#snapshot]

Test coverage

reset is tested in:

snapshot

Saves the current state of a xolotl object for future use. Usage

x.snapshot('snap_name')

Creating two snapshots with the same name will overwrite the first.

Example

% assuming a xolotl object is set up
x.integrate;
x.snapshot('base');
x.set('*gbar') = 1e-3; % turn off all conductances
x.integrate;
% now go back to original state
x.reset('base')

See Also

	reset [https://xolotl.readthedocs.io/en/latest/auto_methods.html#reset]

Test coverage

snapshot is tested in:

setup

A static method that allows you to set up compilers on some operating systems. You need to run this only once. If xolotl works, there is no need to run this.

Usage

xolotl.setup
x.setup

Test coverage

setup is tested in:

plot

Makes a plot of voltage and calcium time series of all compartments. The default option is to color the voltage traces by the dominant current at that point using contributingCurrents and to also show the Calcium concentration on the same plot. Usage

x.plot()

If you want to turn off the colouring, or to hide the Calcium concentration, change your preference using

setpref('xolotl','plot_color',false)
setpref('xolotl','show_Ca',false)

See Also

	manipulate [https://xolotl.readthedocs.io/en/latest/auto_methods.html#manipulate]

	contributingCurrents [https://xolotl.readthedocs.io/en/latest/auto_methods.html#contributingcurrents]

Test coverage

plot is tested in:

getGatingFunctions

static method of xolotl that returns function handles that represent the gating and activation functions of a particular conductance. Example use

[m_inf, h_inf, tau_m, tau_h] = getGatingFunctions(conductance)

where conductance is a string that specifies a conductance C++ header file. The outputs are function handles that can be evaluated independently. This method is used internally in xolotl.show()

See Also

	show [https://xolotl.readthedocs.io/en/latest/auto_methods.html#show]

Test coverage

getGatingFunctions is tested in:

cleanup

A static method that cleans up all transpiled C++ and compiled binary files. Usage

xolotl.cleanup
x.cleanup

Use of this method will trigger a warning every time it is called. You do not need to use this in normal use, but can call this to force a recompile, or to delete old and unused binaries.

Test coverage

cleanup is tested in:

integrate

integrates a xolotl model. Usage

V = x.integrate;
I_clamp = x.integrate;
[V, Ca] = x.integrate;
[V, Ca, mech_state] = x.integrate;
[V, Ca, mech_state, I] = x.integrate;
[V, Ca, mech_state, I, syn_state] = x.integrate;

integrate will return different outputs as shown above. Unless you need every output, it is recommended to skip it, as it makes the integration faster (and reduces the memory footprint).

Explanation of outputs

	V Voltage trace of every compartment. A matrix of size (nsteps, n_comps)

	I_clamp also returned in the first argument, this is the clamping current when a compartment is being voltage clamped. This can be inter-leaved with the voltage of other, non-clamped compartments.

	Ca Calcium concentration in every cell and the corresponding E_Ca (reversal potential of Calcium). A matrix of size (nsteps, n_comps)

	mech_state a matrix representing every dimension of every mechanism in the tree. This matrix has size (nsteps, NC), where NC depends on the precise controllers used, and is automatically determined.

	I the currents of every ion channel type in the model. This is a matrix of size (nsteps, n_cond)

Test coverage

integrate is tested in:

transpile

Generate a C++ file that constructs the model, integrates it, and moves parameters and data from MATLAB to C++ and back. Usage

x.transpile;

Warning

transpile assumes that your xolotl object has a valid hash. Empty hashes will throw an error.

Example

% assuming a xolotl object is set up
x.transpile;

% now view the transpiled code
x.viewCode;

Warning

You should generally never use transpile since xolotl will automatically transpile and compile code for you. Manually transpiling will hinder performance.

See Also

	compile [https://xolotl.readthedocs.io/en/latest/auto_methods.html#compile]

	viewCode [https://xolotl.readthedocs.io/en/latest/auto_methods.html#viewcode]

Test coverage

transpile is tested in:

viewCode

view the C++ code generated by xolotl.transpile that constructs the model and integrates it

x.viewCode;

See Also:

	transpile [https://xolotl.readthedocs.io/en/latest/auto_methods.html#transpile]

Test coverage

viewCode is tested in:

add

adds a cpplab object to a xolotl object.

The add method is the most important way you construct models. Usage

x.add(compartment,'comp_name')
x.add('compartment','comp_name')
x.add('compartment','comp_name',...)

There are two primary ways of using add. The first is to first construct a cpplab object (here called AB), and then add it to the xolotl object using x.add(AB,'AB'). xolotl requires that every compartment is named, and the name has to be specified as a string argument.

Test coverage

add is tested in:

findNSpikes

static method of xolotl that computes the number of spikes in a voltage trace. Example use

N = xolotl.findNSpikes(V);
N = xolotl.findNSpikes(V, on_off_thresh)

V is a vector of voltages, and on_off_thresh is an optional argument that determines the threshold above which a voltage fluctuation is considered a spikes. The default is 0 mV.

See Also

	findNSpikeTimes [https://xolotl.readthedocs.io/en/latest/auto_methods.html#findnspiketimes]

Test coverage

findNSpikes is tested in:

manipulateEvaluate

This method is used to update the xolotl object every time a slider is moved in the manipulate window. This is used internally in xolotl.manipulate. You should not need to use this by itself.

See Also

	manipulate [https://xolotl.readthedocs.io/en/latest/auto_methods.html#manipulate]

Test coverage

manipulateEvaluate is tested in:

connect

Connects two compartments with a synapse. The basic syntax is

x.connect('Comp1', 'Comp2', 'SynapseType', ...)

The first two arguments are the presynaptic and postsynaptic compartment names. For example

% connects two different neurons with an electrical synapse
x.connect('AB', 'LP')

Axial synapses are a special type of electrical synapse that are created between spatially-discrete compartments in a morphological structure. Electrical and axial synapses differ in how they are integrated (see Dayan & Abbott 2001, Ch. 5-6).

connect defaults to an axial synapse when the type of synapse is not specified and either compartment has a defined tree_idx (which identifies the compartment as a part of a multi-compartment neuron model). Otherwise, the created synapse is electrical.

% create an (electrical or axial) synapse between AB and LP with gbar f NaN
x.connect('AB', 'LP')
% create an (electrical or axial) synapse between AB and LP with gbar f 10
x.connect('AB', 'LP', 10)

The most common way to produce a synapse is to pass the synapse type and hen any properties. This is used to create chemical synapses. For example, o add a glutamatergic synapse (from Prinz et al. 2004) between AB and LP with a maximal conductance of 100:

x.connect('AB', 'LP', 'prinz/Glut', 'gbar', 100)

Synapses can also be connected by passing a cpplab object to the connect method

% create a synapse using the cpplab object 'syn_cpplab'
x.connect('AB', 'LP', syn_cpplab)

The following properties can be specified

	Name

	PropertyName

	Maximal conductance

	gbar

	Reversal potential

	E

	Activation variable

	s

Test coverage

connect is tested in:

slice

slice partitions a cylindrical compartment into N slices. Usage

x.slice('comp_name',N)

The compartment to be sliced must explicitly be a cylindrical section, i.e., it must have a defined length and radius. slice cuts the cylinder along the axis, and connects each slice with Axial synapses. This object can then be treated as a multi-compartment model, and xolotl will integrate it using the Crank-Nicholson scheme reserved for multi-compartment models.

Example

% assuming there is a compartment called 'Dendrite'
xolotl.slice('Dendrite',10)

See Also

	connect [https://xolotl.readthedocs.io/en/latest/auto_methods.html#connect]

Test coverage

slice is tested in:

findNSpikeTimes

static method of xolotl that returns a vector of spike times from a voltage trace. Spikes are defined as voltage crossings across a threshold. Example use

spiketimes = xolotl.findNSpikeTimes(V,n_spikes,on_off_thresh);

V is a vector of voltages, and on_off_thresh is an optional argument that determines the threshold above which a voltage fluctuation is considered a spikes. The default is 0. n_spikes is the number of spikes it should look for, and spiketimes will always be a vector n_spikes elments long.

See Also

	findNSpikes [https://xolotl.readthedocs.io/en/latest/auto_methods.html#findnspikes]

Test coverage

findNSpikeTimes is tested in:

manipulate

method that allows you to manipulate some or all parameters in a model hile visualizing its behaviour. Usage

x.manipulate();
x.manipulate('some*pattern')
x.manipulate({'parameter1','parameter2'})

The simplest way to use manipulate is to simply call it with no arguments. By default, all the parameters are linked to sliders that you can play with. In models with a large number of parameters, this can get messy. You can selectively only manipualte some parameters whose names match a pattern using x.manipulate('some*pattern')

Test coverage

manipulate is tested in:

rebase

Configures some internal house-keeping settings. This is called every time a new object is created. You probably don’t ever have to use this, unless you copy xolotl objects across computers with different file systems or operating systems. Usage

x.rebase()

Test coverage

rebase is tested in:

Compiler Support

xolotl simulates models by running compiled C++` code in ``MATLAB. This process requires a C++ compiler that is linked to the MATLAB executable (mex) system.

Compiling on Microsoft Windows

For Windows systems, it is best to use the MinGW-w64 compiler, which uses the GNU gcc toolchain. You should get this from the Add-Ons menu in MATLAB if possible, and the file exchange [https://www.mathworks.com/matlabcentral/fileexchange/52848-matlab-support-for-mingw-w64-c-c-compiler] if not. More details can be found here_.

Compiling on MacOS & Linux

Compilers for which xolotl has been known to work (or not). Note that this has nothing to do with xolotl, but rather reflects whether mex works with these compilers on these OSes.

	OS

	Compiler

	Version

	Works

	macOS 10.13.6

	clang

	Apple LLVM version 9.1.0

	✓

	macOS 10.12.6

	clang

	Apple LLVM version 9.0.0

	✓

	Ubuntu 18.04 LTS

	g++

	8.1

	✓

	Ubuntu 18.04 LTS

	g++

	7.3

	✓

	Ubuntu 17.10

	g++

	7.3

	❌

	Ubuntu 17.04

	g++

	7.0.1

	❌

	Ubuntu 17.10

	g++

	6.4

	❌

	Ubuntu 17.04

	g++

	6.3

	❌

	Ubuntu 17.04

	g++

	4.8.5

	✓

	Ubuntu 17.10

	g++

	4.8

	✓

	Ubuntu 16.04.3 LTS

	g++

	6.3

	✓

	Manjaro Linux

	g++

	8.1

	✓

	Manjaro Linux

	g++

	7.3

	✓

Compiling on Linux

There are a couple of quirks specific to using the MEX compiler on Linux machines.
First, make sure that you have a C++ compiler installed. We recommend g++, which
is part of the GCC software project [https://gcc.gnu.org/].

To get the requisite compiler on Debian/Ubuntu systems, do something similar to

sudo apt-get install g++

On Arch-based systems such as Manjaro, do something similar to

sudo pacman -Syu gcc6

Hint

MATLAB can be particular about which version of g++ it works with. For best results, use
the compiler version recommended by MATLAB. In addition, it’s best to point MATLAB towards
the system compiler, rather than one installed through distributions like Anaconda.

On certain Linux distributions (Arch-based in particular), MEX cannot identify
the installed g++ compiler, even when it exists on your path. The error
looks something like this:

Even though the compiler exists on your path,

>> !which g++
/bin/g++
>> !g++ -dumpversion
8.1.0

MATLAB cannot find the intended C++ compiler.

>> mex -setup C++
Error using mex
No supported compiler was found.

MATLAB recommends changing your PATH so that you default to an older version
of g++. This is not strictly necessary; MATLAB can still compile using MEX
with newer versions of g++ in most cases. Generally, downgrading to an older
version of g++ doesn’t solve this problem.

There is a relatively simple fix however. Credit goes to github user bonanza123 [https://gist.github.com/bonanza123/]
for figuring it out.

	First download the proper version of gcc/g++. If you use a package manager there are generally legacy versions under gcc-VERSION, where VERSION is the version number (e.g. 6). You can also find them here_.

	Second change the mex_LANG_glnxa64.xml specification file, where LANG is either C or C++. This is typically found at ~/.matlab/R2018a/mex_C_glnxa64.xml where R2018a is the version of MATLAB and C is the name of the language.

	Replace all references to $GCC with the path to the soft link to your gcc compiler (e.g. /usr/bin/gcc-6). If you don’t have a soft link to your compiler set up (i.e. which gcc doesn’t tell you the path to the link), then you have to set one up [https://askubuntu.com/questions/898578/how-can-i-change-which-gcc-directory].

	Repeat this process for the mex_C++_glnxa64.xml file. It should be in the same location as the C-specific file.

	Sometimes MATLAB doesn’t generate the C++ .xml file, causing a lot of errors. If it doesn’t exist, copy the C version of the file, rename it to mex_C++_glnxa64.xml, and replace all references to gcc with g++, so that MATLAB knows to use the right compiler.

The problem is fixed if you see something like this in MATLAB

>> mex.getCompilerConfigurations('C++')
ans =

CompilerConfiguration with properties:

 Name: 'g++'
 Manufacturer: 'GNU'
 Language: 'C++'
 Version: ''
 Location: '/usr/bin/g++-6'
 ShortName: 'g++'
 Priority: 'A'
 Details: [1×1 mex.CompilerConfigurationDetails]
 LinkerName: ''
 LinkerVersion: ''
 MexOpt: '/home/alec/.matlab/R2018a/mex_C++_glnxa64.xml'

Units

xolotl doesn’t come with a automatic unit handling system like in NEURON, BRIAN, or in Julia, so you have to pay attention and make sure your parameters are in the right units. The following are default units for various parameters.

	Variable

	Units

	Length of cell

	mm

	Surface area of cell

	mm^2

	Volume of cell

	mm^3

	Voltage

	mV

	Specific capacitance of membrane

	nF/mm^2

	Specific conductance of channel

	μS/mm^2

	Synaptic strength

	nS

	Current injected into cell

	nA

	Axial resistivity

	MΩ mm

	Calcium concentration

	μM

	temperature

	K

Contributing to xolotl

xolotl is far from feature complete, and your contributions are welcome.

Reporting Bugs

	Is it a bug? Are you sure the bug persists after you run transpile and compile` and xolotl.cleanup?

	Describe what the expected behavior is, and what the actual behavior was

Requesting Features

	Describe what you want

	Describe why you want it

	List papers that describe this mechanism, or original research that describes the feature you want

Adding New Conductances/Synapses/Controllers

	Look at existing conductances/synapses/controllers and use them as a guideline

	If you’re making a new conductance, put them in c++/conductances/<first_author_name>

	Make sure you add a reference to the paper you’re getting the conductance details from in a comment at the top of the file

	Send us a pull request

Troubleshooting

On macOS, I get an annoying warning saying “xcrun: error: SDK “macosx10.13.4” cannot be located”

Run the following in your shell (not the MATLAB prompt):

sudo xcode-select -s /Applications/Xcode.app

On macOS, I get a warning saying that “Warning: Xcode is installed, but its license has not been accepted.”

First, make sure you have XCode installed (not just the Command Line Tools – the whole thing). You can get this from the Mac App Store. Then, open XCode and accept the license. You will have to do this only once.

I ran the quickstart, but I don’t see anything

Are you using a tiny screen? Some UI elements may go out of the frame on very small screens. To fix this, acquire the handle to the figure and change the position property. For example

x.manipulate;
manip = gcf;
manip.Position = [100 100 34 56];

I get an error saying I don’t have a compiler

You need a C/C++ compiler. You need to follow MATLAB’s instructions [https://www.mathworks.com/support/compilers.html] on how to get one, how to install one, and how to configure one. It may be helpful to also see our advice on compilers.

License

	GNU GENERAL PUBLIC LICENSE

	Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program–to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains
that there is no warranty for this free software. For both users’ and
authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and
modification follow.

TERMS AND CONDITIONS

	Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this
License. Each licensee is addressed as “you”. “Licensees” and
“recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a “modified version” of the
earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based
on the Program.

To “propagate” a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices”
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

	Source Code.

The “source code” for a work means the preferred form of the work
for making modifications to it. “Object code” means any non-source
form of a work.

A “Standard Interface” means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
“Major Component”, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that
same work.

	Basic Permissions.

All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

	Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work’s
users, your or third parties’ legal rights to forbid circumvention of
technological measures.

	Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

	Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.

b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
“keep intact all notices”.

c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

	Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

“Installation Information” for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

	Additional Terms.

“Additional permissions” are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered “further
restrictions” within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

	Termination.

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

	Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

	Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party’s predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

	Patents.

A “contributor” is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, “control” includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor’s essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To “grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. “Knowingly relying” means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is “discriminatory” if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

	No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

	Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

	Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License “or any later version” applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy’s
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

	Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

	Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

	Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c’ for details.

The hypothetical commands `show w’ and `show c’ should show the appropriate
parts of the General Public License. Of course, your program’s commands
might be different; for a GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school,
if any, to sign a “copyright disclaimer” for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

Index

Methods

This page lists the methods of the xolotl class in MATLAB. This can serve as a reference for advanced usage.

In the rest of this documentation we will assume a xolotl object named x that can be created using

x = xolotl;

Hint

You can list all the methods of xolotl object x by

x.methods;

add

Adds a compartment, conductance, or synapse to the xolotl object. To add
a compartment:

x.add('compartment', 'compartmentName', 'PropertyName','PropertyValue', ...)

Valid compartment properties are

	Name

	Property Name

	Volume

	vol

	Surface area

	A

	Extra. calcium steady.

	Ca_out

	Buffer shell thickness

	shell_thickness

	Intra. calcium steady.

	Ca_in

	Ca++ curr. to conc.

	phi

	Average Ca++ conc.

	Ca_average

	Radius of compartment

	radius

	Target Ca++ conc.

	Ca_target

	Index in xolotl tree

	tree_idx

	Index of neuron

	neuron_idx

	Length of compartment

	len

	Ca++ buff. time const.

	tau_Ca

	Membrane capacitance

	Cm

	Intra. calcium conc.

	Ca

	Membrane potential

	V

To add a compartment named HH with a membrane capacitance Cm = 10

x.add('compartment', 'HH', 'Cm', 10);

To access properties of that compartment, use the syntax x.HH. To add a conductance to that compartment

x.HH.add('ConductancePath', 'PropertyName', 'PropertyValue', ...);

ConductancePath is the path to the .hpp file inside xolotl/c++/conductances/. For example, the conductance path to add the slow calcium conductance from Prinz et al. 2003 is prinz/CaS since the conductance is specified in xolotl/c++/conductances/prinz/CaS.hpp.
You do not have to specify the entire path. Any fragment of the path will be matched.

The following properties can be specified

	Name

	Property Name

	Maximal conductance

	gbar

	Reversal potential

	E

	Inactivation variable

	h

	Activation variable

	m

For example

x.HH.add('prinz/CaS', 'gbar', 500, 'E', -80);

The maximal conductance defaults to 0, the reversal potential defaults based on
the conductance. Activation variables (if any) default to zero. Inactivation variables
default to one. Synapses can be added this way, but it is better to use the connect method.

Note

cpplab allows you to add any cpplab object to anything else, but xolotl assumes that you’re doing sane things. If you add a compartment to a conductance, or something silly, you will get an error.

Children

Returns the children of any cpplab object as a cell of character vectors. Children are also cpplab objects. For example, if HH is the only compartment in x then

x.Children

returns

{'HH'}

This method is inherited from the superclass cpplab.

compile

Hashes and compiles the files needed to run a simulation. These are stored in
your xolotl directory. xolotl automatically compiles when it needs to.
You can turn this functionality off by setting

x.skip_hash = true;

In addition, creating a xolotl object through a function call does not automatically hash and compile. In this case, you should use x.md5hash.

Warning

If you turn hashing off, xolotl might not compile

connect

Connects two compartments with a synapse. The basic syntax is

x.connect('PreSynaptic', 'PostSynaptic', 'Type', PropertyName', PropertyValue, ...)

The first two arguments are the presynaptic and postsynaptic compartment names.

% connects two compartments with an electrical or axial synapse
x.connect('AB', 'LP')

Axial synapses are a special type of electrical synapse that are created between spatially-discrete compartments in a morphological structure.
Electrical and axial synapses differ in how they are integrated (see Dayan & Abbott 2001, Ch. 5-6).
connect defaults to an axial synapse when the type of synapse is not specified and either compartment has a defined tree_idx.
Otherwise, the created synapse is electrical.

% create an (electrical or axial) synapse between AB and LP with gbar of NaN
x.connect('AB', 'LP')
% create an (electrical or axial) synapse between AB and LP with gbar of 10
x.connect('AB', 'LP', 10)

The most common way to produce a synapse is to pass the synapse type and then any
properties. This is used to create chemical synapses.
For example, to add a glutamatergic synapse (from Prinz et al. 2004) between AB and LP
with a maximal conductance of 100:

x.connect('AB', 'LP', 'prinz/Glut', 'gbar', 100)

Synapses can also be connected by passing a cpplab object to the connect
function

% create a synapse using the cpplab object 'syn_cpplab'
x.connect('AB', 'LP', syn_cpplab)

The following properties can be specified

	Name

	PropertyName

	Maximal conductance

	gbar

	Reversal potential

	E

	Activation variable

	s

copy

Copies the entirety of a cpplab object into a new variable.

% create a new xolotl object
N = x.copy
% create a new HH object
N = x.HH.copy

get

values = x.get('findString')

Returns a vector of doubles of the values stored in the specified fields. Automatically calls the find function; the argument is a search query for the find function.

% find all maximal conductances
gbars = x.get('*gbar')
% find all maximal conductances in HH compartment
gbars = x.HH.get('*gbar')

Produces a vector which contains the values of specified properties. get implicitly calls find and uses it to identify and order the elements of the vector. For this reason, get uses wildcard string comprehension. For example, 'HH*gbar' means anything that begins with 'HH' and ends with 'gbar'.
Find all the maximal conductances of the HH compartment

gbars = x.get('HH*gbar')

find

x.find('findString')

Returns a cell array of character vectors for a search query. This function is a cpplab method, so what it does is specific to in which scope it is called.
For example, for a xolotl object x with a compartment HH with three conductances NaV, Kd, Leak

x.find('*gbar')

returns

{'HH.Kd.gbar' }
{'HH.Leak.gbar'}
{'HH.NaV.gbar' }

whereas, a call within the HH scope

x.HH.find('*gbar')

yields

{'Kd.gbar' }
{'Leak.gbar'}
{'NaV.gbar' }

The * symbol is the wildcard operator. It finds any string that matches that pattern (e.g. *gbar finds any string in the xolotl tree that ends with 'gbar').
For example, x.find('HH*gbar') would only fetch paths to maximal conductances in the HH compartment.

Hint

The set and get functions use the same syntax as the find function. They call it implicitly.

getGatingFunctions

[act ict tau_act tau_ict] = xolotl.getGatingFunctions('conductancePath')

Returns the gating functions of a conductance as function handles. The function has four outputs.
The activation steady state equation comes first, followed by the inactivation steady state (if any), then the activation time constant, and finally the inactivation time constant (if any).
The argument is a string that specifies where in the file directory the conductance is specified.
For example to find the NaV conductance from Liu et al. 1998, which is detailed in
.../xolotl/c++/conductances/liu/NaV.hpp

[m_inf, h_inf, tau_m, tau_h] = x.getGatingFunctions('liu/NaV')

These functions are also contained in the xolotl tree, e.g.

x.HH.NaV.cpp_child_functions

Hint

This is a static method of xolotl (i.e. xolotl.getGatingFunctions(...) is valid).

integrate

[V, Ca, cont_states, currents, syn_currents] = x.integrate

Integrates the xolotl object. Returns the membrane potential, intracellular calcium, controller states, intrinsic currents, and synaptic currents as time series.

The membrane potential is returned as matrix of time steps x compartments in the same order as the xolotl object’s scalar representation (i.e. in the command window).
The intracellular calcium is returned as a matrix of time steps x 2*compartments. The first n time series are the intracellular calcium concentrations for each compartment, and the second n time series are the instantaneous calcium reversal potentials.
Controller states are returned as a matrix of time steps x 2*controllers where the first column in each two-column pair is the controller state and the second is the state of the thing upon which the controller is operating.
For a controller onto a maximal conductance, for instance, the first column is the controller state and the second is the maximal conductance.
All other outputs are time series x XYZ where XYZ is the serialized list of those properties. For example, in a xolotl object with 2 compartments AB and BC
with two conductances each: NaV and Kd, the intrinsic currents would return in the form of a time steps x 4 matrix where the columns would be ordered:
Kd current from AB, NaV current from AB, Kd current from BC, NaV current from BC.

If the xolotl properties I_ext and V_clamp are empty (i.e. x.I_ext = []), the integration proceeds without injected current or clamped voltage.
Injected current and voltage clamp cannot co-occur. Setting one of these properties negates the other. If I_ext is a scalar,
current is injected into each compartment at every time step.

% add 0.1 nA to each compartment at each time-step
x.I_ext = 0.1;

If I_ext is non-scalar, it can take the form of a vector of size nComps x 1, or a matrix of size nSteps x nComps, where
nSteps is the number of time-steps in the simulation (i.e. x_t_end/x.dt) and nComps is the number of compartments.

The first form injects a constant current into each compartment, as specified elementwise by the vector.

% apply 0.1 nA to first compartment, 0 to second
x.I_ext = [0.1 0];

If I_ext is a matrix of size nSteps x nComps, current is injected elementwise during simulation,
so that the injected current at each time step for each compartment is specfied
by an element in the matrix.

% add a current step to the second half of the simulation
Ie = zeros(nSteps, nComps); Ie(round(nSteps/2),1) = 0.1;
x.I_ext = Ie;

Clamped voltage is always added to the xolotl structure in the matrix form.

% voltage clamp the first compartment at -50 then 50
Vc = zeros(nSteps, nComps); Vc(1:5000,1) = -50; Vc(5001:10000,1) = 50;
x.V_clamp = Vc;

Note

If you add new compartments to the network, it will reset the I_ext and V_clamp
properties of xolotl.

manipulate

x.manipulate('findString')

Opens the GUI to permit real-time visualization of changing network parameters.
An argument specifies for which network properties to generate sliders (default is all of them).

% minimum usage
x.manipulate
% specify sliders only for maximal conductances of HH compartment
x.manipulate('HH*gbar')

manipulate displays the results of the plot function by default.
If the manipulate_plot_func property of xolotl is specified (e.g. x.manipulate_plot_func{1} = @myFunc),
it will display custom functions. manipulate_plot_func is a cell of function handles to all visualzation functions
that are wrapped by manipulate.

% wrap two visualization functions with manipulate
x.manipulate_plot_func{1} = @x.plot;
x.manipulate_plot_func{2} = @myFIcurve;
x.manipulate

Note

Multiple visualzation functions with manipulate is current in-development.

plot

Plots voltage and intracellular calcium traces for each compartment.
The voltage traces are colored based on the dominant current. A current is dominant when
it is the outward current with the greatest magnitude and dV/dt is negative;
or it is the inward current with the greatest magnitude and dV/dt is positive.

x.plot

replicate

x.replicate('cpplabObject', N)

Replicates a cpplab object in the tree N times with all children included.
This is useful for generating many identical compartments. To generate 100 HH compartments,
where HH is already specified

x.replicate('HH', 100)

reset

Resets all state variables to their initial condition. State variables are the membrane potential and intracellular calcium concentration of each compartment, and gating variables for each conductance.
When the xolotl object is flagged x.closed_loop = false, this is done automatically before integrating.

x.reset

set

x.set('findString', values)

Sets network parameters to specified values.
The first argument is a find string that indicates which parameters to set.
The second argument is a vector that holds the values for setting the parameters.
This function is useful for setting many parameters at once. For example, to set the maximal conductances of all compartments to a the values of a vector gbars

x.set('*gbar', gbars)

show

xolotl.show('conductancePath')

Plots the activation and inactivation steady-states and time constants for a conductance.
The argument is a string that specifies where in the file directory the conductance is specified.
For example to show the NaV conductance from Liu et al. 1998, which is detailed in
.../xolotl/c++/conductances/liu/NaV.hpp

x.show('liu/NaV')

Hint

This is a static method of xolotl.

slice

x.slice(compartmentName, nSlices, axialResistivity)

Splits up a single compartment into many compartments connected by axial synapses.
This is only used in multicompartment models to add morphological complexity.

The first argument specifies which compartment to slice, as a character vector.
The second argument specifies the number of total slices. To make 100 compartments
connected by axial synapses, specify 100.
The third argument sets the axial resistivity, which must be a real positive number. It defaults to NaN.

Hint

This function assumes cylindrical geometry (i.e. the radius and len properties of the compartment must be defined).

snapshot

x.snapshot('regular')

Use this method to take a snapshot of a model in a particular state. The model can be restored to this state at any time using x.reset(‘regular’)

viewCode

x.viewCode

Displays the C++ mexBridge code in your default editor.

Methods

This page lists the methods of the xolotl class in MATLAB. This can serve as a reference for advanced usage.

In the rest of this documentation we will assume a xolotl object named x that can be created using

x = xolotl;

Hint

You can list all the methods of xolotl object x by

x.methods;

 _static/up.png

_static/ajax-loader.gif

_images/a45d8592a69a3c2a6f2a6ca9059d7b1a6eeb24df.png

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 XOLOTL: A Fast and Flexible Neuronal Simulator

 		
 Quickstart

 		
 Installing

 		
 Creating a Hodgkin-Huxley Model

 		
 Simulate the Model

 		
 Frequency Asked Questions (FAQ)

 		
 Who Wrote xolotl?

 		
 How Can I Contribute?

 		
 Something is Broken, What Do I Do?

 		
 How Do I Cite This?

 		
 Installing, Updating and Uninstalling

 		
 Installing: Download a MATLAB Toolbox

 		
 Installing: Via Git

 		
 Updating

 		
 Uninstalling

 		
 How do I…

 		
 create a empty xolotl object?

 		
 create a new compartment?

 		
 add a mechanism to a compartment?

 		
 add a conductance to a compartment?

 		
 find out what conductances are available?

 		
 add a custom conductance?

 		
 inspect the object I have created?

 		
 connect two compartments using a synapse?

 		
 find out what synapse types are available?

 		
 inject current into a compartment?

 		
 voltage clamp a compartment?

 		
 specify simulation time step and other integration parameters?

 		
 integrate the model and obtain outputs?

 		
 debug a model or simulation?

 		
 Methods

 		
 show

 		
 Example

 		
 See Also

 		
 Test coverage

 		
 compile

 		
 See Also:

 		
 Test coverage

 		
 contributingCurrents

 		
 See Also

 		
 Test coverage

 		
 matrixCost

 		
 See Also

 		
 Test coverage

 		
 checkCompartmentName

 		
 See Also

 		
 Test coverage

 		
 benchmark

 		
 Test coverage

 		
 V2matrix

 		
 See Also

 		
 Test coverage

 		
 uninstall

 		
 Test coverage

 		
 plotgbars

 		
 Test coverage

 		
 update

 		
 Test coverage

 		
 copy

 		
 Test coverage

 		
 reset

 		
 Example

 		
 See Also

 		
 Test coverage

 		
 snapshot

 		
 Example

 		
 See Also

 		
 Test coverage

 		
 setup

 		
 Test coverage

 		
 plot

 		
 See Also

 		
 Test coverage

 		
 getGatingFunctions

 		
 See Also

 		
 Test coverage

 		
 cleanup

 		
 Test coverage

 		
 integrate

 		
 Explanation of outputs

 		
 Test coverage

 		
 transpile

 		
 Example

 		
 See Also

 		
 Test coverage

 		
 viewCode

 		
 See Also:

 		
 Test coverage

 		
 add

 		
 Test coverage

 		
 findNSpikes

 		
 See Also

 		
 Test coverage

 		
 manipulateEvaluate

 		
 See Also

 		
 Test coverage

 		
 connect

 		
 Test coverage

 		
 slice

 		
 Example

 		
 See Also

 		
 Test coverage

 		
 findNSpikeTimes

 		
 See Also

 		
 Test coverage

 		
 manipulate

 		
 Test coverage

 		
 rebase

 		
 Test coverage

 		
 Compiler Support

 		
 Compiling on Microsoft Windows

 		
 Compiling on MacOS & Linux

 		
 Compiling on Linux

 		
 Units

 		
 Contributing to xolotl

 		
 Reporting Bugs

 		
 Requesting Features

 		
 Adding New Conductances/Synapses/Controllers

 		
 Troubleshooting

 		
 On macOS, I get an annoying warning saying “xcrun: error: SDK “macosx10.13.4” cannot be located”

 		
 On macOS, I get a warning saying that “Warning: Xcode is installed, but its license has not been accepted.”

 		
 I ran the quickstart, but I don’t see anything

 		
 I get an error saying I don’t have a compiler

 		
 License

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

